Towards physical interpretation of substituent effects: the case of meta- and para-substituted anilines.
نویسندگان
چکیده
Quantum chemical modeling was used to investigate the electron-donating properties of the amino group in a series of meta- and para-X-substituted anilines (X = NMe2, NH2, OH, OMe, CH3, H, F, Cl, CF3, CN, CHO, COMe, CONH2, COOH, NO2, and NO). Different methods (HF, B3LYP, and M06-2X) and basis sets (6-31+G(d,p), 6-311++G(d,p), and aug-cc-pVDZ) were applied and compared with the MP2 approach. The B3LYP/6-311++G(d,p) method was chosen as the most appropriate one. The substituent properties were described by σ, cSAR(X) and SESE descriptors; the amino group was characterized by structural (dCN, dNH and ΣNH2) and electronic [δ(N) and cSAR(NH2)] parameters; whereas the transmitting moiety was characterized by aromaticity indices HOMA and NICS, as well as by QTAIM characteristics at the ring critical point. All the used parameters were found to be mutually interrelated with much better correlations for the para-derivatives than the meta-derivatives. It was numerically confirmed that sensitivity of the amino group to the substituent effect was greater by over three times when the substituent was located in the para-position. In the case of the meta-derivatives, variability of characteristics for both the reaction center and the substituent was small. The reverse substituent effect was clearly shown by comparison of the cSAR(X) characteristics for monosubstituted benzenes, and meta- and para-substituted anilines.
منابع مشابه
Kinetic and thermodynamic study of substituent effect on the Claisen rearrangement of para-substituted SI aryl ether: a Hammett study via DFT
In order to find the susceptibility of the Claisen rearrangement and next proton shift reaction of ally) aryl etherto the substiment effects in pan position, the kinetic and the:rmodynamie parameters are calculated at The33 LTP level using 6-3110. b asis set. The calculated activation energies for the rearrangements and protonshift reactions are around 3133 kcaUmol and 52.16 kcal/mol, nap.. liv...
متن کاملTheoretical insight of substituent effect in para substituted Fe(CO)4–pyridine complexes
Abstract: Systematic studies on the substituent effect in para substituted Fe(CO)4–pyridine complexes have been studied on the basis of DFT quantum-chemical calculations. The following substituents were taken into consideration: NO2, CN, CHO, F, H, CH3, and OH. Additionally, the Fe–N and Fe–C bonds were characterized on the basis of Atoms in Molecules topological analysis of electron density. I...
متن کاملTheoretical study of the effects of substituent and quadrupole moment on π-π stacking interactions with coronene
Stability of the π-π stacking interactions in the Ben||substituted-coronene and HFBen||substituted-coronene complexes was studied using the computational quantum chemistry methods (where Ben and HFBen are benzene and hexaflourobenzene, || denotes π-π stacking interaction, substituted-coronene is coronene molecule which substituted with four X groups, and X= NH2, CH3, OH, H, F, CF3, CN and NO). ...
متن کاملThe Study of Substituent effect on Osmabenzene complexes
The electronic structure and properties of the osmaabenzenes and para substituted osmabenzenes have been explored using the hybrid density functional mpw1pw91 theory. Systematic studies on the substituent effect in para substituted osmabenzenes complexes have been studied. The following substituents were taken into consideration: H, F, CH3,OH, NH2,CN, NO<...
متن کاملInterference of H-bonding and substituent effects in nitro- and hydroxy-substituted salicylaldehydes
Two intramolecular interactions, i.e., (1) hydrogen bond and (2) substituent effect, were analyzed and compared. For this purpose, the geometry of 4- and 5-X-substituted salicylaldehyde derivatives (X = NO(2), H or OH) was optimized by means of B3LYP/6-311 + G(d,p) and MP2/aug-cc-pVDZ methods. The results obtained allowed us to show that substituents (NO(2) or OH) in the para or meta position w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 17 شماره
صفحات -
تاریخ انتشار 2016